Induction of dystrophin localization in cultured Xenopus muscle cells by latex beads.

نویسندگان

  • H B Peng
  • Q Chen
چکیده

The distribution of dystrophin in Xenopus myotomal muscle cells was examined in conventional and confocal immunofluorescence microscopy. By labeling dissociated single muscle fibers with a monoclonal or a polyclonal antibody against dystrophin, we found that dystrophin is ten times more concentrated at the myotendinous junction (MTJ) than at the extrajunctional sarcolemma. At the MTJ, dystrophin lines the membrane invaginations where myofibrils attach to the membrane. It is colocalized with talin, but is not related to the distribution of acetylcholine receptors (AChRs) which are clustered at the postsynaptic membrane in the vicinity of the MTJ in these fibers. We found that the localization of dystrophin can be induced in cultured Xenopus myotomal muscle cells by treating them with polystyrene latex beads. Dystrophin is discretely localized at the bead-muscle contacts. With electron microscopy, a sarcolemma specialization with all the salient features of the MTJ, including basal lamina-lined membrane invaginations along which myofibrils make attachment. Although these beads also induce clustering of AChRs, the patterns of dystrophin and AChR localization are distinct. The appearance of dystrophin at the bead-contacted sarcolemma is coincident with the development of the membrane invaginations. This, together with its concentration along membrane invaginations at the MTJ in vivo, suggests a role for dystrophin in the formation of this junctional specialization. Since the signal for MTJ development can be presented to cultured muscle cells in a temporally and spatially controlled manner by beads, this system offers a simple model for analyzing the mechanism of this sarcolemma specialization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters

The formation of acetylcholine receptor (AChR) clusters can be experimentally induced in cultured Xenopus myotomal muscle cells by positive polypeptide-coated latex beads (Peng, H.B., P.-C. Cheng, and P.W. Luther, 1981, Nature [Lond.], 292:831-834). This provides a simple procedure for studying the cellular process of AChR clustering. In this study, the involvement of calcium and calmodulin in ...

متن کامل

Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve.

Acetylcholine receptors (AChRs) form clusters spontaneously in cultured Xenopus myotomal muscle cells in the absence of innervation. Innervation causes a dispersal of these clusters, as well as the formation of new clusters along the neuromuscular contact. To examine whether this dispersal process is dependent upon the presence of the nerve or can be effected by the formation of new clusters al...

متن کامل

Early cytoplasmic specialization at the presumptive acetylcholine receptor cluster: a meshwork of thin filaments

Postsynaptic differentiation can be experimentally induced in cultured Xenopus myotomal muscle cells by polyornithine-coated latex beads (Peng, H. B., and P.-C. Cheng, 1982, J. Neurosci., 2:1760-1774). In this study, we examined the time course of this process. Small, punctate acetylcholine receptor (AChR) clusters were detectable as early as 1.5 h after the addition of the beads. Subsequently,...

متن کامل

Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells

The postsynaptic membrane from Torpedo electric organ contains, in addition to the acetylcholine receptor (AChR), a major peripheral membrane protein of approximately 43,000 mol wt (43K protein). Previous studies have shown that this protein is closely associated with AChR and may be involved in anchoring receptors to the postsynaptic membrane. In this study, binding sites for monoclonal antibo...

متن کامل

Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor.

Recent studies have suggested a role for molecules residing at the muscle surface in signaling presynaptic development at the neuromuscular junction (NMJ). Since heparan sulfate-proteoglycan is a major component of the extracellular matrix of skeletal muscle, factors that are bound to this proteoglycan, such as basic fibroblast growth factor (bFGF), are in a strategic position for neuronal sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 103 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1992